Bosone di Higgs: una particella molto umana
di Andrea Lucarelli - 17/07/2012
Fonte: origini
Simulazione di uno sciame di particelle riconducibile al decadimento di un bosone Higgs presso il rilevatore ATLAS, LHC Lacrime di commozione rigavano il volto di Peter Higgs mentre mercoledì 4 luglio i fisici del Centro Europeo per la Ricerca Nucleare (CERN) annunciavano la scoperta dell’ultimo tassello mancante nella famiglia di particelle previste dal Modello Standard. La teoria descrive i mattoni fondamentali della materia, le particelle elementari come quark ed elettroni e le forze fondamentali che ne regolano l’interazione quali, ad esempio, l’elettromagnetica e l’elettrodebole associando a ciascuna un quanto di energia chiamato “bosone”. Al coronamento dei successi del Modello Standard mancava la particella più elusiva di tutte: il bosone di Higgs. La caccia iniziata quasi 50 anni fa nacque dall’intuizione geniale di un giovane e schivo fisico teorico che appena trentacinquenne ne ipotizzò l’esistenza e se ne aggiudicò il nome. Detto in termini propriamente fisici questo bosone rappresenta il “quanto” di un campo scalare (localmente gauge invariante) che permea l’intero Universo e dota le particelle che vi interagiscono delle proprietà di massa. In un linguaggio più comprensibile il campo di Higgs può essere pensato come una onnipresente “melassa cosmica” che permea l’intero Universo invischiando le particelle e dotandole di quella “resistenza” a mettersi in moto che chiamiamo massa. Le particelle che non vi interagiscono ad esempio come il fotone, il quanto del campo elettromagnetico, sono di fatto prive di massa. Per decadi i fisici hanno vagliato senza esito i dati prodotti da acceleratori di particelle come il LEP (l’antecedente dell’attuale LHC costruito al CERN vicino Ginevra tra la Svizzera e la Francia) e il Tevatron (il suo concorrente statunitense) cercando di trovare un’indicazione della presenza di Higgs tra gli sciami di particelle prodotte nelle collisioni subnucleari. Il miglior risultato raggiunto finora era un debole segnale appena distinguibile dal rumore di fondo. In soli due anni di dati all’LHC si è raccolta una statistica di eventi sufficiente non solo ad avere conferma dell’esistenza della particella ma per determinarne con accuratezza l’energia e dunque la massa. La solidità del risultato raggiunto è ulteriormente garantita dall’utilizzo due rivelatori indipendenti noti come ATLAS e CMS e guidati da due team di fisici che hanno misurato con metodi diversi sciami di eventi di collisione sostanzialmente identici. E ora che il bosone di Higgs è stato trovato cosa accade?
Alcune Frequently Asked Questions (FAQs) sul Bosone di Higgs. Come vengono prodotti I bosoni di Higgs nel Large Hadron Collider (LHC)? I protoni accelerati ad elevatissime energie nel sincrotrone LHC vengono fatti collidere liberando grandi quantità di energia. Sappiamo che l’energia può essere convertita in materia secondo la famosa equazione di Einstein E = mc2. Questo è il motive per cui particelle che sono molto più pesanti dei protoni a riposo possono emergere dal vuoto nelle collisioni. Ma l’equazione di Einstein non è magia, le particelle vengono create secondo dei processi definiti. Nell’LHC il processo più probabile che crea il bosone di Higgs è la fusione di gluoni, le particelle fondamentali del campo di forza nucleare anche noto come interazione forte.
Tutti dicono che questa particella era prevista dal Modello Standard, ma come esattamente ? Che cosa mancava che ha permesso ai fisici di teorizzare l’esistenza di Higgs ? Le proprietà delle particelle fondamentali e le forze che ne mediano le interazioni sono descritte accuratamente dal Modello Standard. Alcune particelle, come il fotone ad esempio, sono prive di massa mentre altre come i bosoni W e Z, mediatori dell’interazione debole (nel decadimento b), pesano tanto quanto degli interi atomi. I fisici si sono chiesti quale fosse il meccanismo che dota le particele di massa e vari ricercatori quasi contemporaneamente e indipendentemente hanno proposto l’esistenza di un campo pervasivo con cui tutte le particelle possono interagire. Ad una maggiore interazione con tale campo corrisponde un valore maggiore di massa, e per il fotone ovviamente l’interazione è nulla. L’attuale Prof. Peter Higgs fu il primo a suggerire in una nota in calce ad una sua pubblicazione la possibile esistenza di un bosone associato a tale campo che ha dunque preso il suo nome (clikka qui maggiori dettagli sulla storia e l’importanza della particella di Higgs). La scoperta delle particelle di massa maggiore quali i bosoni W, Z ed il quark top ha richiesto acceleratori ad energie elevate raggiungibili solo in seguito ai più recenti sviluppi tecnologici che sono costati, va ricordato, ingenti sforzi economici. La scoperta del bosone di Higgs, l’ultima particella rimasta da trovare, era il test chiave per dimostrare la validità del Modello Standard.
Perché molti scienziati sono cauti nell’affermare che il bosone trovato sia proprio Higgs? La massa del bosone di Higgs viene misurata all’LHC solo indirettamente, attraverso le sue reazioni di decadimento che secondo il Modello Standard producono: due fotoni, quattro leptoni, ecc. Il fatto che questi percorsi di decadimento siano stati osservati con una statistica di 5s ci dice che l’evento osservato non è casuale (la probabilità che lo sia è infatti di 1/(3.5 milioni) e dunque del tutto trascurabile), tuttavia non ci conferma pienamente che l’Higgs osservato sia la versione prevista dal Modello Standard. Le collisioni raggiunte fino ad ora non sono sufficienti per discriminare il Modello Standard da altre teorie. Una traccia particolare che ancora non è stata osservata dai due rivelatori indipendenti CMS e ATLAS è un percorso di decadimento raro che dovrebbe produrre 2 particelle tau (t). (Elettroni, muoni e t fanno parte della famiglia dei leptoni= particelle leggere). Dunque esiste la possibilità che quanto osservato sia un Higgs non standard come previsto da altre teorie come il Modello Supersimmetrico (anche detta SUSY dagli “addetti ai lavori”). SUSY prevede che le particelle osservate siano un sottoinsieme di una famiglia molto più ampia. Questo significherebbe che vi potrebbero essere multipli bosoni di Higgs e secondo teorie ancora più esotiche essi potrebbero interagire in uno spazio extra dimensionale. Il punto chiave è che se il bosone di Higgs trovato non è quello previsto dal Modello Standard significa che questo modello necessita di essere esteso oppure completamente rivisto, ma potremo dirlo solo dopo aver meglio compreso cosa siano le nuove particelle osservate. E’ previsto un periodo di chiusura dell’LHC di circa un anno per poterne migliorare le prestazioni, aumentandone l’energia e portarlo al pieno delle sue potenzialità permettendo la scoperta di nuove e sconosciute particelle (diverse migliorie sono previste inclusa una revisione delle cavità superconduttive a radiofrequenza). Il direttore del CERN ha annunciato che l’LHC continuerà a funzionare prima di questo periodo di chiusura per alcuni mesi in modo da raccogliere quei dati che mancano per capire se il bosone che stiamo osservando sia l’Higgs previsto dal Modello Standard oppure no.
I soldi spesi per gli esperimenti all’LHC non potrebbero essere spesi meglio? |